Files
ths-speech/python-server/transcribe.py
Yannik Schmidt fe3d6cadc6 refactor
2020-02-09 02:17:26 +01:00

87 lines
2.8 KiB
Python

#!/usr/bin/env python
# Copyright 2017 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Google Cloud Speech API sample application using the REST API for async
batch processing.
Example usage:
python transcribe_async.py resources/audio.raw
python transcribe_async.py gs://cloud-samples-tests/speech/vr.flac
"""
import argparse
import io
from gcloud import storage
from google.cloud import speech
from google.cloud.speech import enums
from google.cloud.speech import types
# [START speech_transcribe_async]
def transcribe_file(speech_file):
url = upload_file(speech_file)
print(url)
return transcribe_gcs("gs://"+url)
def upload_file(filename):
bukket = "ths-speech-audio/"
client = storage.Client()
cb = client.get_bucket("ths-speech-audio")
blob = cb.blob(filename)
blob.upload_from_filename(filename)
return bukket + filename
def transcribe_gcs(gcs_uri):
"""Asynchronously transcribes the audio file specified by the gcs_uri."""
client = speech.SpeechClient()
audio = types.RecognitionAudio(uri=gcs_uri)
config = types.RecognitionConfig(
encoding=enums.RecognitionConfig.AudioEncoding.LINEAR16,
sample_rate_hertz=32000,
language_code='de-DE')
operation = client.long_running_recognize(config, audio)
print('Waiting for operation to complete...')
response = operation.result(timeout=900)
# Each result is for a consecutive portion of the audio. Iterate through
# them to get the transcripts for the entire audio file.
ret = ""
for result in response.results:
# The first alternative is the most likely one for this portion.
if len(result.alternatives) < 1:
continue
ret += result.alternatives[0].transcript
print(u'Transcript: {}'.format(result.alternatives[0].transcript))
print('Confidence: {}'.format(result.alternatives[0].confidence))
return ret
# [END speech_transcribe_async_gcs]
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description=__doc__,
formatter_class=argparse.RawDescriptionHelpFormatter)
parser.add_argument(
'path', help='File or GCS path for audio file to be recognized')
args = parser.parse_args()
if args.path.startswith('gs://'):
transcribe_gcs(args.path)
else:
transcribe_file(args.path)