implement quality/prediction query

This commit is contained in:
Yannik Schmidt
2020-06-18 21:24:50 +02:00
parent 4aae81a950
commit 44943833a7
3 changed files with 55 additions and 3 deletions

View File

@@ -1,5 +1,7 @@
#!/usr/bin/python3
from trueskill import TrueSkill, Rating
import scipy
import math
env = TrueSkill(draw_probability=0, mu=1500, sigma=833, tau=40, backend='mpmath')
env.make_as_global()
@@ -64,7 +66,7 @@ def evaluateRound(r):
# print(p)
#####################################################
################### LOCK/GETTER ####################
##################### GETTER ########################
#####################################################
def newRating(mu=None, sigma=None):
@@ -81,5 +83,32 @@ def getEnviroment():
def balance(players, buddies=None):
raise NotImplementedError()
def get_player_rating(sid, name="NOTFOUND"):
raise NotImplementedError()
def predictOutcome(teamA, teamB):
'''Predict outcome of a game between team a and team b
returns: (0|1, confidence)'''
ratingsA = [ p.rating for p in teamA ]
ratingsB = [ p.rating for p in teamB ]
muTeamA = sum([ r.mu for r in ratingsA])
muTeamB = sum([ r.mu for r in ratingsB])
sigmaTeamA = math.sqrt(sum([ r.sigma**2 for r in ratingsA]))
sigmaTeamB = math.sqrt(sum([ r.sigma**2 for r in ratingsB]))
# probabilty that a random point from normDistTeamA is greater
# than a random point from normDistB is normA - normB and then the
# "1 - Cumulative Distribution Function" (cdf) aka the "Survival Function" (sf)
# of the resulting distribution being greater than zero
prob = scipy.stats.norm(loc=muTeamB-muTeamA, scale=math.sqrt(sigmaTeamB**2-sigmaTeamA**2)).sf(0)
if prob >= 0.5:
return (0, prob)
elif prob < 0.5:
return (1, 1-prob)
def quality(teamA, teamB):
'''Take two teams of players and calculate a game quality'''
ratingsA = [ p.rating for p in teamA ]
ratingsB = [ p.rating for p in teamB ]
return trueskill.quality(ratingsA, ratingsB)

View File

@@ -24,6 +24,28 @@ def getPlayer():
return ("Player not found", 404)
return "{}'s Rating: {}".format(p.name, int(p.rating.mu - 2*p.rating.sigma))
@app.route('/get-outcome-prediction'. methods=["POST"])
def getOutcomePrediction():
'''Make a prediction based tww submitted teams of players'''
teamA = flask.request.json["teamA"]
teamB = flask.request.json["teamB"]
cnameTeamA = flask.request.get("cnameTeamA")
cnameTeamB = flask.request.get("cnameTeamB")
quality = ts.quality(teamA, teamB)
prediction, confidence = ts.predict(teamA, teamB)
retData = dict()
retData.update( { "cnameTeamA" : cnameTeamA } )
retData.update( { "cnameTeamB" : cnameTeamB } )
retData.update( { "quality" : quality } )
retData.update( { "prediction" : prediction } )
retData.update( { "confidence" : confidence } )
return flask.json.jsonify(retData)
################# DataSubmission #######################
@app.route('/submitt-round', methods=["POST"])
def jsonRound():

View File

@@ -2,3 +2,4 @@ flask
trueskill
sqlite3
json
scipy